PROBLEMS

Gas Phase Equilibria

- 1. What are the equilibrium constant expressions K_c and K_c for each of the following reactions?
 - (a) $2N_2O_5(g) \implies 4NO_2(g) + O_2(g)$
 - (b) $2SO_2(g) + O_2(g) \implies 2SO_3(g)$
 - (c) $SO_2(g) + \frac{1}{2}O_2(g) \Longrightarrow SO_3(g)$
 - (d) $P_4(g) + 5O_2(g) \Longrightarrow P_4O_{10}(g)$
- 2. The reaction of nitrogen with oxygen to give nitrogen monoxide,

$$N_2 + O_2 \implies 2NO$$

has an equilibrium constant of 2.5×10^{-3} at 2100°C.

- (a) What is the expression for the equilibrium constant?
 - (b) What are the units of the equilibrium constant?
- 3. The equilibrium constant for the equilibrium

$$N_2O_4(g) \Longrightarrow 2NO_2(g)$$

at 100°C is 0.212 mol L⁻¹. What is the value of the equilibrium constant for the same reaction written as follows?

- (a) $2NO_2(g) \rightleftharpoons N_2O_4(g)$
- (b) $NO_2(g) \rightleftharpoons \frac{1}{2}N_2O_4(g)$
- 4. At 425° C, $K_{\rm e} = 300 \, {\rm mol}^{-2} \, {\rm L}^2$ for the reaction in which methanol, CH₃OH, is synthesized from hydrogen and carbon monoxide:

$$2H_2(g) + CO(g) \Longrightarrow CH_3OH(g)$$

If the initial concentrations of H₂, CO, and CH₃OH are 0.10 mol L⁻¹, is the system at equilibrium?

5. When the reaction

$$2SO_2(g) + O_2(g) \Longrightarrow 2SO_3(g)$$

had reached equilibrium, the concentrations of the reactants

and the products were found to be $[SO_2] = 0.011$, $[SO_3] = 0.100M$, and $[O_2] = 0.20M$. What is the value K_c ?

6. Dinitrogen tetraoxide dissociates to nitrogen dioxida according to the equation

$$N_2O_4(g) \Longrightarrow 2NO_2(g)$$

In a mixture of the two gases at 100° C the concentrations were found to be $[N_2O_4] = 0.10M$ and $[NO_2] = 0.12M$.

- (a) What is the value for the reaction quotient of the mixture?
- (b) Given that $K_c = 0.212 \text{ mol L}^{-1}$ at 100°C is the system at equilibrium?
- (c) If not, will [NO₂] increase or decrease as equilibrium is achieved?
- (d) What are the final equilibrium concentrations of NO₂ and N₂O₄? What is the value of K_p at 100°C has this reaction?
- 7. What are the equilibrium expressions, K_c and so location for each of the following heterogeneous reactions?
 - (a) $C(s) + O_2(g) \Longrightarrow CO_2(g)$
 - (b) $MgCO_3(s) \Longrightarrow MgO(s) + CO_2(g)$
 - (c) 2NaHCO₃(s)

$$Na_{2}CO_{3}(s) + CO_{2}(g) + H_{2}O(g)$$

- (d) $ZnO(s) + CO(g) \Longrightarrow Zn(s) + CO_2(g)$
- (e) $3\text{Fe(s)} + 4\text{H}_2\text{O(g)} \implies \text{Fe}_3\text{O}_4(\text{s}) + 4\text{H}_2(\text{g})$